Exercise 3.5.4

Suppose that $\cosh x \sim \sum_{n=1}^{\infty} b_{n} \sin n \pi x / L$.
(a) Determine b_{n} by correctly differentiating this series twice.
(b) Determine b_{n} by integrating this series twice.

Solution

Part (a)
Consider the Fourier sine series expansion of $\cosh x$ (defined on $0 \leq x \leq L$).

$$
\cosh x=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

Differentiate both sides with respect to x. Although hyperbolic cosine is a continuous function, $\cosh 0 \neq 0$ and $\cosh L \neq 0$, so the sine series cannot be differentiated with respect to x term by term. The right side is expected to be a cosine series.

$$
\begin{equation*}
\frac{d}{d x}(\cosh x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

To get A_{0}, integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d}{d x}(\cosh x) d x & =\int_{0}^{L}\left(A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}\right) d x \\
& =A_{0} \int_{0}^{L} d x+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0} \\
& =A_{0} L
\end{aligned}
$$

Solve for A_{0}.

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} \frac{d}{d x}(\cosh x) d x \\
& =\frac{1}{L}(\cosh L-1)
\end{aligned}
$$

To get A_{n}, multiply both sides of equation (1) by $\cos \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d}{d x}(\cosh x) \cos \frac{p \pi x}{L}=A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \frac{d}{d x}(\cosh x) \cos \frac{p \pi x}{L} d x & =\int_{0}^{L}\left(A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right) d x \\
& =A_{0} \underbrace{\int_{0}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x
\end{aligned}
$$

Since the cosine functions are orthogonal, this second integral on the right is zero if $n \neq p$. Only if $n=p$ is it nonzero.

$$
\begin{aligned}
\int_{0}^{L} \frac{d}{d x}(\cosh x) \cos \frac{n \pi x}{L} d x & =A_{n} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x \\
& =A_{n}\left(\frac{L}{2}\right)
\end{aligned}
$$

Solve for A_{n}.

$$
\begin{aligned}
A_{n} & =\frac{2}{L} \int_{0}^{L} \frac{d}{d x}(\cosh x) \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{L} \int_{0}^{L} \sinh x \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{L} \int_{0}^{L} \frac{e^{x}-e^{-x}}{2} \cos \frac{n \pi x}{L} d x \\
& =\frac{2 L\left[-1+(-1)^{n} \cosh L\right]}{n^{2} \pi^{2}+L^{2}}
\end{aligned}
$$

As a result, equation (1) becomes

$$
\sinh x=\frac{1}{L}(\cosh L-1)+\sum_{n=1}^{\infty} \frac{2 L\left[-1+(-1)^{n} \cosh L\right]}{n^{2} \pi^{2}+L^{2}} \cos \frac{n \pi x}{L} .
$$

Differentiate both sides with respect to x once more. Because hyperbolic sine is continuous, the cosine series can be differentiated with respect to x term by term.

$$
\frac{d}{d x}(\sinh x)=\sum_{n=1}^{\infty} \frac{2 L\left[-1+(-1)^{n} \cosh L\right]}{n^{2} \pi^{2}+L^{2}}\left(-\frac{n \pi}{L}\right) \sin \frac{n \pi x}{L}
$$

Simplify both sides.

$$
\cosh x=\sum_{n=1}^{\infty} \frac{2 n \pi\left[1-(-1)^{n} \cosh L\right]}{n^{2} \pi^{2}+L^{2}} \sin \frac{n \pi x}{L}
$$

Set the coefficients equal to each other.

$$
b_{n}=\frac{2 n \pi\left[1-(-1)^{n} \cosh L\right]}{n^{2} \pi^{2}+L^{2}}
$$

Part (b)

Consider the Fourier sine series expansion of $\cosh x$ (defined on $0 \leq x \leq L$).

$$
\cosh x=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

Integrate both sides with respect to x.

$$
\begin{aligned}
\sinh x & =\int \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} d x+C_{1} \\
& =\sum_{n=1}^{\infty} b_{n} \int \sin \frac{n \pi x}{L} d x+C_{1} \\
& =\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L}+C_{1}
\end{aligned}
$$

To determine C_{1}, integrate both sides with respect to x from 0 to L.

$$
\begin{aligned}
\int_{0}^{L} \sinh x d x & =\int_{0}^{L}\left[\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L}+C_{1}\right] d x \\
& =\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right) \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}+C_{1} \int_{0}^{L} d x \\
& =C_{1} L
\end{aligned}
$$

Solve for C_{1}.

$$
\begin{aligned}
C_{1} & =\frac{1}{L} \int_{0}^{L} \sinh x d x \\
& =\frac{\cosh L-1}{L}
\end{aligned}
$$

As a result, the formula for $\sinh x$ becomes

$$
\sinh x=\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L}+\frac{\cosh L-1}{L} .
$$

Integrate both sides with respect to x once more.

$$
\begin{aligned}
\cosh x & =\int\left[\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L}+\frac{\cosh L-1}{L}\right] d x+C_{2} \\
& =\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right) \int \cos \frac{n \pi x}{L} d x+\int \frac{\cosh L-1}{L} d x+C_{2} \\
& =\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right)\left(\frac{L}{n \pi}\right) \sin \frac{n \pi x}{L}+\frac{\cosh L-1}{L} x+C_{2}
\end{aligned}
$$

This equation holds for every value of x, so set $x=0$ to determine C_{2}.

$$
1=C_{2}
$$

As a result,

$$
\cosh x=\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right)\left(\frac{L}{n \pi}\right) \sin \frac{n \pi x}{L}+\frac{\cosh L-1}{L} x+1
$$

Substitute the Fourier sine series expansions of 1 and x and simplify the right side.

$$
\begin{aligned}
\cosh x & =\sum_{n=1}^{\infty} b_{n}\left(-\frac{L}{n \pi}\right)\left(\frac{L}{n \pi}\right) \sin \frac{n \pi x}{L}+\frac{\cosh L-1}{L} \sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n} L}{n \pi}\right] \sin \frac{n \pi x}{L}+\sum_{n=1}^{\infty} \frac{2\left[1-(-1)^{n}\right]}{n \pi} \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty}\left(-\frac{L^{2}}{n^{2} \pi^{2}} b_{n}\right) \sin \frac{n \pi x}{L}+\sum_{n=1}^{\infty}\left[-\frac{2(-1)^{n}(\cosh L-1)}{n \pi}\right] \sin \frac{n \pi x}{L}+\sum_{n=1}^{\infty} \frac{2\left[1-(-1)^{n}\right]}{n \pi} \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty}\left\{-\frac{L^{2}}{n^{2} \pi^{2}} b_{n}-\frac{2(-1)^{n}(\cosh L-1)}{n \pi}+\frac{2\left[1-(-1)^{n}\right]}{n \pi}\right\} \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty}\left\{-\frac{L^{2}}{n^{2} \pi^{2}} b_{n}+\frac{2\left[1-(-1)^{n} \cosh L\right]}{n \pi}\right\} \sin \frac{n \pi x}{L}
\end{aligned}
$$

Set the coefficients equal to each other.

$$
b_{n}=-\frac{L^{2}}{n^{2} \pi^{2}} b_{n}+\frac{2\left[1-(-1)^{n} \cosh L\right]}{n \pi}
$$

Solve for b_{n}.

$$
\begin{gathered}
b_{n}\left(1+\frac{L^{2}}{n^{2} \pi^{2}}\right)=\frac{2\left[1-(-1)^{n} \cosh L\right]}{n \pi} \\
b_{n}\left(\frac{n^{2} \pi^{2}+L^{2}}{n^{2} \pi^{2}}\right)=\frac{2\left[1-(-1)^{n} \cosh L\right]}{n \pi} \\
b_{n}=\frac{2 n \pi\left[1-(-1)^{n} \cosh L\right]}{n^{2} \pi^{2}+L^{2}}
\end{gathered}
$$

